Predicting Sentences using N-Gram Language Models

نویسندگان

  • Steffen Bickel
  • Peter Haider
  • Tobias Scheffer
چکیده

We explore the benefit that users in several application areas can experience from a “tab-complete” editing assistance function. We develop an evaluation metric and adapt N -gram language models to the problem of predicting the subsequent words, given an initial text fragment. Using an instance-based method as baseline, we empirically study the predictability of call-center emails, personal emails, weather reports, and cooking recipes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بازشناسی متون فارسی با استفاده از مدل زبانی n-gram و پالایش گرامری

Abstract Text recognition has been one of the growing research topics in recent years. Many of these researches have focused on recognition of letters and sub-words as a basis for identifying larger text structures such as words, phrases and sentences. This thesis presents a new method in which the recognized sub-words are combined in order to provide meaningful words and sentences in Farsi tex...

متن کامل

Using Language Models to Assist in the Correction of Machine Translation Output

Machine translation (MT) systems are renowned for making many translation errors. Spotting such errors can be a time-consuming and labour-intensive process which makes automatic evaluation and correction of MT output highly desirable for both system developers and end-users. Based on the novel approach of using statistical language models to assess the quality of MT, the main aim of this projec...

متن کامل

Predicting Grammaticality on an Ordinal Scale

Automated methods for identifying whether sentences are grammatical have various potential applications (e.g., machine translation, automated essay scoring, computer-assisted language learning). In this work, we construct a statistical model of grammaticality using various linguistic features (e.g., misspelling counts, parser outputs, n-gram language model scores). We also present a new publicl...

متن کامل

Terminology of Combining the Sentences of Farsi Language with the Viterbi Algorithm and BI-GRAM Labeling

This paper, based on the Viterbi algorithm, selects the most likely combination of different wording from a variety of scenarios. In this regard, the Bi-gram and Unigram tags of each word, based on the letters forming the words, as well as the bigram and unigram labels After the breakdown into the composition or moment of transition from the decomposition to the combination obtained from th...

متن کامل

Unsupervised Learning on an Approximate Corpus

Unsupervised learning techniques can take advantage of large amounts of unannotated text, but the largest text corpus (the Web) is not easy to use in its full form. Instead, we have statistics about this corpus in the form of n-gram counts (Brants and Franz, 2006). While n-gram counts do not directly provide sentences, a distribution over sentences can be estimated from them in the same way tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005